\/

r— —— = E—
4

/" AD=A051 132 CALIFORNIA UNIV SAN DIEGO LA JOLLA DEPT OF APPLIED M==ETC F/6 11/4
MECHANICS OF COMPOSITE MATERIALS.(U)

\ 1977 6 A HEGEMIER F49620=76=C=0024

‘ UNCLASSIFIED AFOSR=-TR=78-0206

Ly |

. NL

END

DATE
FILMED

4 -8

DN




e s

{, FILE

J bad

-

0

N

ADA051L,32

UNCLASSIFLIED

SECURITY CLASSIFICATION OF THIS PAGE (When De-..‘rmn.d)
L

9 REPORT DOCUMENTATION PAGE READ INSTRUCTIONS

BEFORFE COMPLETING FORM
I REPORT NUMQER- J

- 2. GOVT ACCESSI 13, RECIPIENT'S.GATALOG NUMBER
/4 AFOSRYR- 78-0206) PO e

4. TITLE (and Subtitle) p |S. TYPE OF REPORT & PERIOD cozgaeo
; X s /

INTERIM r=f

 uly976 - /
6. o G-O3G. REPORTN BER

8. CONTRACT OR GRANT NUMBER(z)

MECHANICS OF COMPOSITE MATERIALS ,

ST —— S R

7 Ay THOR(s)

o Yl

rc Aﬁ{ECEMlER / 5] F4962p—76a-C~0024f)"

9. PEFFORN\NG ORGANIZATZON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

UNIVERSITY OF CALIFORNIA, SAN DIEGO L ‘TE‘ZBE;;}”"'T ol
APPLIED MECHANICS & ENGINEERING SCIENCE DEp J¢ 2307B

LA JOLLA, CA 92093 “61102F

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPQRT DATE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA| 71 | 1977

BLDG 410 13 uuuaEn oF P
BOLLING AlR FORCE BASE, D C 20332 M)j 1l ;

14 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Ollice) \S. SECURITY C‘L“ﬂsf (ol lhlrn.-poﬂ)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

S ”
17. CISTRIBUTION STATEMENT (of the abstract enterad in Block 20, if dilterent from Report) i M V_: ] € B

e~
‘

18. SUPPLEMENTARY NQTES

19 KEY wORDS (Continue on revarse side If necessary and Identily by block number)

COMPOSITE MATERIALS
WAVE PROPAGATION
MECHANICS OF FAILURE
CIFFUSION

20 A8STRACT (Continue on reverse aide if necessary and identily by dlock number)

This report summarizes the results of a theoretical study of wave propagation, diffusion,
and damage accumulation in composite materials.

BY . FOM . MATE  mnisiAw AR § A BEAE ARAR EaE




AFOSR -TR. b

B~ 0206

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Department of Applied Mechanics and Engineering Sciences

La Jolla, California 92093

e 24
1 49620-76-C 002

MECHANICS OF COMPOSITE MATERIALS

by G. A. Hegemier

ANNUAL TECHNICAL REPORT

Przpar=sd for
Air Forc~ Office of Scizntific R2search
Arlington, Virginia 22209

Approves 1.
distrip ation

™

anl ¢

[




Conditions of Reproduction

Reproduction, translation, publication, use and disposal in whole or in

part by or for the United States Government is permitted.

Qualified requestors may obtain additional copies from the Defense
Documentation Center, all others should apply to the Clearinghouse
for Federal Scientific and Technical Information.

AIR FORCE OFFICE oF SCIENTIFIC RESEAT - (77any
NOTICE OF TRANSMITTAL 10 Dno AR
This technical Fepert hus voen i
epproved for publ riloase IAW 4

Distributtion is unlimited,
A. D. BLOSE
Technical Information Officer ddish}




UNCLASSIFIED
SECUR!TY CLASSIFICATION OF THIS PAGE (When Dulu‘En:eM'd)l
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I RLPORT NUMBER 2. GOVT ACCESSION NO.[ 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5 TYPE OF REPORT & PERIOD COVERED
INTERIM
MECHANICS OF COMPOSITE MATERIALS _July 1976 - june 1977
6. PERFORMING OG. REPORT NUMBER
7 AUTHOR’S) 8. CONTRACT OR GRANT NUMBER(S)

F49620-76-C-0024
G A HEGEMIER

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

. ; . p AREA & WORK UNIT NUMBERS
UNIVERSITY OF CALIFORNIA, SAN DIEGO

APPLIED MECHANICS & ENGINEERING SCIENCE DEP ¢ Ribt
LA JOLLA, CA 92093 61102F 2
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
AIR FORCE OFFICE OF SCIENTIFIC RESEARCH/NA 1977
BLDG 410 13. NUMBER OF PAGES
BOLLING AIR FORCE BASE, D C 20332 68
T4 Mon TORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15. SECURITY CLASS. (of this report)
"UNCLASSIFIED
| 1Sa. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DiISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the ahstract entered in Block 20, if different from Report)

18 S_PPLEMENTARY NOTES |

13 ¥ v wORDS (Continue on reverse side if necessary and idantify by block number)
COMPOSITE MATERIALS

WAVE PROPAGATION

MECHANICS OF FAILURE

EIFFUSION

20 AB3TRALT rContinue on reverse side i! necassary and identify by block number)
This report summarizes the results of a theoretical study of wave propagation, diffusion,
and damage accumulation in composite materials.

g 73 JITION OF 1 NOV 3515 O8SOLE .
et T R L b L UNCLASSIFIED

SECLRITY CLASSIFICATION OF THIS PAGE (Hlien Data Entered)




MECHANICS OF COMPOSITE MATERIALST

by

G. A. Hegemie r!
F49620-76-C-0024

ABSTRACT

This report summarizes the results of a theoretical study
of wave propagation, diffusion, and damage accumulation in

composite materials.
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MECHANICS OF COMPOSITE MATERIALS
I, RESEARCH OBJECTIVES

Research under the subject Contract represents a continuing effort®
to construct viable nonlinear micro-mechanical continuum models to pre-
dict the thermomechanical response of advanced composite materials. The
thermomechanical processes under study include:

. Linear and nonlinear wave propagation

. Linear and nonlinear diffusion (thermal and hygrothermal)

. Mechanisms and accumulation of damage.
The thermomechanical measures include:
Global stress, deformation, temperature, internal energy fields

Local stress, deformation, temperature, internal energy fields

. Residual properties of damaged composites.

2. RESEARCH PROGRESS
2.1 Discussion
Excellent progress has been made to date in modeling both laminated
and fibrous composites as homogeneous continua with microstructure. The
resulting theory is generally referred to as a '"Theory of Interacting Continua"

or a "Mixture Theory with Microstructure'. In contrast to classical theories

®Previous work was conducted under AF-AFOSR Grant 70-1975 and AF-AFOSR
Contract 75-2870.




with similar titles, the governing equations are completely specified by a
knowledge of the initial microstructural geometry of the composite, the
component constitutive relations, and the component interface physics.

In further contrast to classical theories, the current model provides infor-
mation on stress, displacement, strain, temperature, and internal energy
fields within the microcomponents as well as global measures of these
guantities. The present theory also accounts for debonding at the micro-
component interfaces - a basic dammage mode. Models incorporating crack
distributions throughout the constituents are under study.

The most general mathematical model considered to date is a non-
linear, anisotropic, thermomechanical mixture theory with microstructure.
Particular, simplified forms of this model have been developed to cover
special cases of composite geometry, material constitutive relations, and
ohysical processes or problems. In all cases, however, theoretical
construction is based upon one of two basic methods which are in turn
based upon an asymptotic scheme in which dominant signal wavelengths
associated with the physical process are assumed to be large in comparison
vwith typical composite microdimensions. An explanation of the foregoing
construction methods, as well as a number of interesting examples, can
be found in Appendix IL

The composites studied using the above asymptotic technique range

rom elementary laminated to complex three-dimensional advanced




composites. In addition to certain model composites, materials have
included quartz phenolic, carbon phenolic, carbon carbon, and graphite
epoxy. Representative problem areas include nose tips, heat shields,
engine blades, nozzles, and hygrothermal environments.

Cases completed and in publication thus far include:

. A general theory for wave propagation in linear elastic and
linear-viscoelastic laminated composites with isotropic laminae;

. A general theory for linear thermal diffusion in laminated
composites with isotropic laminae;

. A ''first order'' theory for linear wave propagation in anisotropic
laminates with oblique layup;

'

. ""First order'' theories for wave propagation, diffusion, and
debonding in unidirectional fibrous composites with cylindrical fibers of
arbitrary cross section;

. ''First order' nonlinear, anisotropic and isotropic, thermo-
dynamic theories for wave propagation, diffusion, and damage accumulation
due to debonding in both laminated and fibrous composites of specific types.

In the general linear cases above, a hierarchy of models is system-
atically defined by the order of the truncation of the asymptotic sequence
involved in the theoretical construction process. ReFention of all terms

in this sequence leads to a formally exact theory. Retention of only the

zeroth-order plus first order terms results in a so-called "first order"




theory which can be cast in the form of a mixture theory. The latter
usually constitutes an adequate micromechanical model of a composite
for engineering purposes. All nonlinear models are 'first order' theories.

The first order models for laminates and fibrous composites
incorporate the effects of arbitrary fiber geometry, anisotropy, and inter-
face debonding. In addition to diffusion, a thermodynamic theory of elastic-
plastic wave propagation under finite deformation has been developed. The
constitutives laws of the microcomponents currently in publication relate
the mean stress (trace of the stress tensor) to density and internal energy
by a Mie-Griineisen caloric equation of state and the stress deviator ten-
sor to the rate-of-deformation tensor by an elastic-perfectly plastic
relation of the von Mises type; extension to general anisotropic plasticity
utilizing a plastic potential and an associated flow ride is under develop-
ment. Constituent debonding and component-interface physics is governed
by a Coulomb frictional-type relation; the latter constitutes the present
measure of 'damage''; extension of this measure to include microcracking
throughout the components is, as was noted previously, under study.

In the case of linear elastic wave propagation, model accuracy
has been demonstrated by comparison of phase velocity spectra with exact
and/or experimental data. Accuracy superior to existing theories has
been observed, as well as first order model applicability down to wave-

lengths on the order of typical composite microdimensions (when the energy




is partioned primarily in the first mode). In addition, a number of transient
pulse cases have been treated; these exhibit good correlation with exact and/or
experimental data. A sampling of typical transient pulse results for both
laminated and unidirectional fibrous composites is illustrated in Figs. 1-4
of Appendix l. Typical transient wave propagation results for a complex,
advanced, three-dimensional composite are given in Figs. 8-10 of Appendix I,
Complete details, including extensive phase-velocity-spectra-calculations,
can be found in the appropriate references listed under Section 2, 2.
In the case of large deformations and elastic-plastic wave propaga-
tion, theorectical transient pulse-results for propagation parallel to the
fibers of a unidirectional fibrous composite have been compared with data
from a 2D-Lagrangian finite difference-code (CRAM); the latter is essentially
exact. As can be observed from Appendix I, Figs. 11-14, the agreement
between ""exact'' and approximate calculations was found to be excellent.
Model accuracy in the case of interface debonding has, to-date,
been assessed by comparison with experimental data on delaminated
plates composed of alternating layers of Polymethyl Methacrylate (PMMA,
Rohm and Haas Type A), and 6061-T¢ aluminum. The laminae of the
composite were oriented perpendicular to the impact plane, and struck
by a projectile fired from a 10 cm bore light gas gun. On the basis of
averaged particle velocity measured at the rear face of the specimen,

the model hypothesized yields excellent correlation with the experimental




results. The test setup and typical results are illustrated in Figs. 15-18
of Appendix I,

In addition to the above, studies concerning the accuracy of the
thermal-portion of the continuum models were undertaken. In particular,
diffusion-type processes in a laminated composite with periodic micro-
structure were examined. Solutions for the lowest-order models were
compared with ""exact' results from a finite difference code. For most

cases the lowest-order "effective conductivity'' theory was found to yield
good results. For exceptional problems requiring a higher-order theory,
a modified version of the lowest-order theory was found to yield excellent
correlation between exact and approximate solutions. For many problems
of the diffusion-type, these elementary equations may offer an attractive
alternative to other means for obtaining solutions. Typical results for
the case of heat propagating normal to the layers of the laminated com-
posite of Fig. 1, Appendix I, are illustrated in Figs. 19 and 20 of
Appendix I. In each case a uniform temperature To is applied to y =0

from t =0 and ¢t = to while the boundary temperature is zero for all other

1 . ore = + "
time. (Here A hl h2 paca

= heat capacity of a-material, ka =
thermal diffusivity). It is emphasized here that, although Figs. 19, 20
refer to a one-dimensional example, the thecory is vaiid for three-

dimensional problems. The one-dimensional case was seclected mainly

because the most severe test of the theory occurs when heat flow is
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(since material properties are discontinuous in

S

normal te the laminate
Finally, it is noted that a major development in theoretical modeling
This development allows

Basically the task of

this direction).

was effected during the previous research period.
treatment of arbitrary fiber geometry and arrays.

constructing mixture theories has been partioned into two isolated steps.
The first step involves the determination of the general mixture equations

these equations involve coefficients which

for a particular problem class
must be determined from the detailed microstructural geometry, inter-
The second step defines the con-

face data, and constitutive relations.

nts via a quasi-static "'microboundary value problem' (MVP),
Resolution of the MVP is carried out by a variational-based finite element

w
-
(]

The procedure has been applied to diffusion and wave propaga-
Here important information has been

method.
tion in unidirectional composites.

obtained regarding the accuracy of the concentric cylinders approximation
used frequently in practice for circular fibers in a hexagonal array and
Extension of the procedure to

r rectangular fibers in a similar array.
arbitrary three dimensional geometries is under development.

fo

A discussion of the above subject matter can be found in the survey
For the readers convenience, the latter

aper listed under Section 2. 3,

pape
is included as Appendix Il of this report.




2.2 Research Applications

The fundamental concepts embodied in the aforementioned wave
propagation studies have been successfully employed ir an applied research
effort to model 1-D (FMI COMRAD) and AVCO 3DQP quartz pheonlic
composites. These models, and the resulting numerical code (TINC) are
presently in practical use by the engineering profession. Typical results

for 3 DQP are illustrated in Figs. 5 - 10 of Appendix L

2.3 List of Publications

The following publications are representative of the research
progress attained during previous and present Grant periods. All
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APPENDIX I

Compendium of Typical Theoretical Results

Presented in this Appendix is a sampling of typical transient pulse
and diffusion calculations carried out using the Theory of Interacting
Continua (TINC). The cases discussed include laminated and unidirectional
fibrous composites as well as a complex 3-dimensional layup. Results of

the TINC theory for each example are compared to experimental data.

L.aminated Composites

The geometry of the laminated composites studies is illustrated
in Fig. 1. One problem of interest is that of symmetric (P) wave
propagation parallel to the layers, with material behavior restricted to
the linear elastic range. A comparison of TINC and experimental results
is given in Fig. 2. The experimental results were reported by Whittier
and Peck [ 1] for specimens composed of Thornel (high modulus carbon)
fibers reinforcing a carbon phenolic matrix. Specimens of 1/4-inch
thickness were subjected to a uniform pressure at the left boundary, with
a step function time-dependence induced by a gas dynamic shock wave of
about 70 psi. The numerical calculations were initiated by impacting a
step function velocity of 7.786 cm/sec to both constitL;.ents at the boundary.
While this condition does not correspond precisely to the experiment, it

was felt that the error introduced would be negligible when far removed
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from the front surface. Figure 2 depicts the comparison between
experiment and theoretical results for averaged rear surface velocity,
normalized on the boundary input velocity. Since absolute times were
not measured in the tests, theoretical and experimental results were
matched at their respective first peak arrivals. In the figure, results
from the full TINC equations solved numerically are denoted '"Continuum
mixture theory.'' The results denoted ''Simplified theory' are for an

elementary form of the TINC thecry admitting a closed-form solution.

Unidirectional Fibrous Composite

The TINC theory has been applied to the problem of wave prop-
agation parallel to the fibers of a unidirectionally reinforced composite
with hexagonal array. The hexagonal array is approximated by concentric,
linearly elastic cylinders as illustrated in Fig. 3.

In Fig. 4, transient pulse data predicted by TINC is compared
with experimental data on a unidirectional quartz phenolic fibrous
composite. The experiments were subjected to a 70 psi step function
in pressure via a shock tube. The figure depicts the comparison between
the experimental and TINC theory code predictions of area-averaged rear
surface velocity. Results of the simplified TINC theory are also por-
trayed. Once again the experimental and thcorotical' results are matched
at their first peak arrivals since absolute arrival times were not measured
experimentally, As was the case in Fig. 2, the times shown arc those

L5




predicted by the theory.

Three-dimensional Layups

Predictions of transient pulse behavior from the TINC theory
have been compared to experimental results for a 3-dimensional quartz
phenolic composite (3DQP) manufactured by AVCO. A representative
selection of the results are given here.

A "block" 3DQP specimen (Fig. 5) was subjected to shock tube
tests by the Aerospace Corporation. The test procedure is the same
as that used for laminated and fibrous composites and is described above.
Once again the theoretical and experimental boundary conditions are not
identical, but this decrepancy is expected to introduce little error. The
averaged rear surface velocity measured by experiment is compared to
that predicted by the TINC theory in Fig. 6. Also shown are results
predicted by the elementary ''Head of the Pulse' approximate [27s
The experimental data has been forced to coincide with the theoretical at
\'/Vo = 1/3 since absolute arrival times were not measured.

Another set of relatively low pressure wave propagation experiments
were performed at the Air Force Weapons Laboratory using a light gas
gun and "midspace' 3DQP specimens, shown in Fig. 7. In this test, three
specimens of different thicknesses were mounted on a single target and
impacted with a .0l-inch mylar flyer. The input stress profiles for the

three specimens are illustrated in Fig. 8. For the TINC calculations,

16




input velocity time-histories corresponding to the stress-time data of
Fig. 8 were used. A comparison of experimental and theoretical results
for the thickest of these specimens is shown in Fig. 9. Since absolute
arrival times were not measured, the two curves are forced to coincide
at their peak pressures. The agreement here is excellent, especially

in view of the fact that the wave is measured only 2-1/2 microdimensions
from the front surface. Also, with the 10kb input stress, this is a non-
linear calculation,

The AFWL also performed a series of high-pressure gas gun
experiments on ''midspace' 3DQP specimens (Fig. 7). Experimental
and theoretical data are compared in Fig. 10. The observed agreement
indicates that the thermodynamic and nonlinear constitutive behavior
incorporated into the TINC theoretical model are adequate. Note that
here the rear surface velocity is measured only 1-1/2 microdimensions
from the front surface. Thus, as before, the TINC theory, though
derived as an ''outer' solution, yields surprisingly good results even

at locations quite near the boundary,

Comparison of TINC and 2-D Finite Difference Code

It is of interest to compare the results from a TINC calculation
to those of a typical two-dimensional Lagrangian finite difference code
which is essentially exact. Such a code (CRAM) is available at Systems,

Science and Software, Inc. The two codes were compared for the
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concentric cylinder geometry of Fig. 11. Computer costs for CRAM were
approximately 500 times those for running the TINC code. Several typical
results are illustrated in Figs. 12-14 for a square wave input velocity
(shown as problem #2 on Fig. 11). Once again, the calculations were

carried out within a few microdimensions of the boundary.

Debonding of Constituent Interfaces

Model accuracy in the case of interface debonding or cracking
has, to date, been assessed by comparison with experimental data
dealing with delaminated plates composed of alternating layers of
Polymethyl Methacrylate (PMMA, Rohm and Haas Type A), and 6061-T6
aluminum. The laminae of the composite were oriented perpendicular
to the impact plane, and struck by a projectile fired from a 10 cm bore
light gas gun. On the basis of averaged particle velocity measured at
the rear face of the specimen, the model hypothesized yields excellent
correlation with the experimental results.

The test setup employed is illustrated in Fig. 15. Typical
correlation between theoretical and experimental results is shown in

Figs. 16-18. Complete details can be found in reference [133

Diffusion
The laminated geometry of Fig. | was selected to evaluate the

continuum model construction procedure for diffusion problems (a

18
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complete discussion of this work can be found in reference [4]). The
case of heat propagation normal (in the y-direction) to the layers was
selected for a comparison of exact and continuum theory solutions since
it is known that this case represents the most severe test of the latter.
Figure 19 represents a case of similar material properties whereas
Fig. 20 illustrates the comparison for widely differing material prop-
erties. Continuum theory-results were obtained via closed-form
solutions for a sauare-wave temperature input at the boundary y = 0.
"Exact’ results were obtained using a finite difference code. The
calculations illustrate the ability of the first-order theory to model

microstructure details and closely match the exact data.
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MIXTURE THEORIES WITH MICROSTRUCTURE FOR WAVE
PROPAGATION AND DIFFUSION IN COMPOSITE MATERIALS

Two procedures for constructing mixture theories with micro-
structure are discussed for wave propagation and thermal diffusion
processes in binary laminated and fibrous composites. Each method
proceeds from the composite microstructure and is based upon an
asymptotic scheme wherein the ratio of transverse-to-longitudinal
characteristic times associated with a physical process is assumed to be
small. The methods retain considerable information regarding the
mechanical and/or diffusive fields within the microcomponents.
Theoretical results are compared with both experimental and exact data
in an effort to evaluate model accuracy. The presentation includes treat-
ment of geometric, constitutive, and interface nonlinearities.

l. INTRODUCTION

A considerable number of coatinuum theories have been proposed
for thermomechanical processes in composites. The continuum theory
of mixtures represents one of the more important and successful theoreti-
cal descriptions of such multiphase materials. According to this concept,
the composite constituents are modeled, at each instant of time, as super-
posed continua in space. Each continuum is allowed to undergo individ-
ual deformations. The microstructure of an actual composite is then
simulated by specifying the interactions between the continua.

Mixture theories for multiphase materials have been developed
from both macrostructural and microstructural viewpoints. The vast
majority of activity, however, has been directed toward the former,
which concerns the formulation of a general theoretical iramework for
classes of mixtures based upon certain phenomenological postulates that
avoid detailed microstructural considerations. Excellent accounts of
this approach can be found in [1-3],

The development of mixture theories from the microstructural
viewpoint represents a more difficult task. The reward, however, is a
model - which shall be called a mixture theory with microstructure -
that is completely determined by the geometry and constitutive relations
of the individual components and which provides, to a certain degree of
accuracy, information concerning microstructure fields. O course,
the price one must pay for such detail is often a case-by-case study
rather than a general theory. Nevertheless, it should be recognized
that, while general macrostructural - based theories may appear more
elegant, such theories may not be practical for many applications due to
the unreasonable burden placed upon the experimentalist to determine a
multitude of constants and/or functions.
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In this presentation, focus is placed upon several recent works by
the author aad co-workers concerning the construction of mixture theories
with microstructure for laminated and fibrous composites. The discus-
sion is limited to thermomechanical processes in composites with initial
periodic microstructure. Particular emphasis is placed upon wave
propagation and thermal diffusion,

The presentation is divided into five sections. The methodology
associated with two theoretical construction techniques is given in
Section 2 along with a brief survey of applications. These techniques
are demonstrated via two examples in Sections 3 and 4. Finally, in an
effort to illusidate the applicability and utility of the techniques, two
applications to nonlinear problems are discussed in some detail in
Section 5; these include comparisons between mixture theory, exact and/
or experimental results.

2. METHODOLOGY AND SURVEY

A variety of construction procedures may be used to generate
mixture theories with microstructure. Two such procedures are selected

= Spe e e T R . T = St
iOL discussiSu bescin in vicw of their cbserved success in describing

thermomechanical processes in composite materials.

The first procedure, which is illustrated in Section 3 by an
elementary example, is the Differential-difference Method. This
approach has been used to develop continuum models of wave propagation
in linear elastic [4-9,20] and linear viscoelastic [9-10] laminated com-
posites, wave propagation in linear elastic fibrous composites [7-117,
wave propagation and debonding in laminated composites [12], and
thermal diffusion in laminated composites [ 13, 14]. The method consists
of eight basic construction steps which may be summarized as follows:

1) the field quantities (all dependent variables) of each composite
constituent are expanded in a suitable spatial series (this expansion,

which amounts to discretization of the component domains, may range
trom a Taylor series for sufficiently simple geometries to topological
multiplexes ' 15], e.g., finite elements, for complex geometries);

2) recurrence relations for the expansion coefficient-functions are ob-
tained by use of the field equations and the series is telescoped; 3) applica-
tion of interface continuity conditions lead to differential (in time) -

finite difference (in space) equations; 4) an associated set of differential
(in time) - functional difference equations is observed to contain, as a
solution subset, solutions of the finite difference relations; 5) solutions

of the functional equations are smooth fields which take on exact values

at discrete spatial points; these smooth fields are now employed as
dependent variables; 6) all spatial differences are expanded in a Taylor
series - an operation which furnishes partial differential equations, i.e.,
a continuum model; 7) nondimensional variables and a small parameter
representing the ratio of typical micro-to-macro dimensions is introduced
and the operators are truncated according to an asymptotic procedure;

3) mixture equations result by algebraic manipulation.

The second procedure, illustrated in Section 4 by an elementary
example, is the Regular Asymptotic Method. This approach has been
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u:ed to model nonlmear wave propaoatlon in lammated [16] and fibrous
~17-197 composites, and thermal diffusion in fibrous composites [20-21].
The method consists of six basic construction steps which may be sum-
marized as follows: 1) based upon the particular composite and the
process considered, an estimate of the order of magnitude of all field
variables is made; 2) the field equations are re-scaled such that all
dependent variables are O(l); in the process a small parameter ts tntro-
duced which constitutes a measure of the ratio of micro-to-macro-
dimensions of the problem; 3) the conservation equations are averaged

to obtain a standard mixture form; 4) the scaled field variables are
expanded in a regular asymptotic series; 5) the two lowest order systems
(including interface conditions) are used to obtain expressions for the
interaction terms and the constitutive relations; 6) the constants involved
in 5) are obtained from the solution of a static micro boundary value
problem defined over a unit cell; a variational principle - based finite
element method is suggested to resolve this boundary value problem.

A judicious choice of a particular method depends upon the
problem. The Differential-difference Method is best suited to linear
problams and clementary gcometries such as laminates. Here formally
exact relations may be obtained in many cases. The Regular Asymptotic
Method is, on the other hand, applicable to nonlinear problems and
complex geometries. In this case one is usually conteat with the first
few terms of the asymptotic series.

3. EXAMPLE l: WAVE PROPAGATION

For the purpose of illustrating the Differential-difference Method,
consider wave propagation in a periodic array of linearly elastic, homo-
geneous and isotropic laminae, perfectly bonded at all interfaces as
illustrated in Fig. lI. Lety =x, for notational convenience and assume
a state of uniaxial motion in the y-direction; i. e., the case of one-
dimensional longitudinal waves propagating normal to the laminae. Re-
stricting attention to small isothermal deformations, the appropriate
conservation and constitutive equations are

2 (e,k o,k
@o-pa w20, (g-(r2wa w® <0, (1)
Y t y
while the interface continuity conditions are
(1 k 2
(u,c) ’k)(h( ¢} = .u,o} .<) h( ),t) ;
kel 1 ,
{u,cr’.(l e )(-h( ),t) = {u,cf?‘ k)(h(z).t) . (2)

[n the above the superscripts (&,k) refer to the kth layer of the &
constituent, a =1,2; k =1,2,3,.., . The variabley &k) is a local
coordinate with origin at the midplane of the (&,k) layer; 0 = 0 and

u =upare normal stress and displacement (subscripts on ¢ and u have
been dropped for brevity). The quantities p(@), h(a), 3\(®), u(®) are mass
density, layer half thickness and Lame ’ constants for the & - constituent.
In addition 24( ) = 2( )/3y, 3,( ) =3( )/3t.

Wave motion in the composite is completely specified by (1), (2)
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together with initial conditions at t=0 and boundary ‘data on y =0, H(H = =l
The objective of the subsequent work is to replace this set of equations
(infinite if H = =) by a single set of partial differential equations which
represent-a continuum mixture theory.

3.1 Expansion, Recurrence Relations

Let us expand the stress and displacement about each lamina mid-
plane as follows:

1 o n
P L T L e 3)
-0 (n)
n=

Here g represents any of o(a'k) (a,k)

Upon substituting (3) into (1) and
equating powers of y(a k), one obtains the differential - recurrence
relations

2
(@) (k) 2 (Ol ‘<) (a k) _ ~(a) (o,k)
S 90y = 3 000k, %) “EF Ya+n) (ha)
Here
@° =), (@ (@)
< E%pY , EY = 2n? , (4b)
where n =0,1,2.,.:k =1,2,3,0ee:0=1,2 With use of the recurrence
relations (4a), the series (3) may be telescoped as follows
a,k) (a,k ,k) K
{u.O}( ZY(Q ).t) =C(a }(g )
o,k 2 (e,k)
+ ¢ @S E g, pa ! (5)
(@) (oK) e
where C y O are formal differential operators defined by
-1
) o,k
C(a k) = cosh(c(a) y( )at) ’
: -1 -1
S(a.z<) - (C(a) y(a’k)at)-lsinh(c(a) Y(a,k)

3) - (6)

The functions

(o)(a' Yt), u 0 (ak)t) represent stress and displacement at

the midplane of the (g, k) layer; these serve as dependent variables in the
ensuing analysis.,

3.2 Transition to a Continuum Theory

Substitution of the expansions (5) into the interface conditions (2)
furnishes the following differential (in time) - finite difference (in s pace)

equations with dependent variables defined at discrete points along the
y-axis:

( !
C(t)')(u c,k+l)  (e,k)

«}
(ﬁ k) () ~(2) (&) (a k+l1) (o,k)
(&), (o, k+1) (e,k) ﬁ)({i k) _ a (a) {a) 2 (o,k+1) (o, k)
Clog) *90) ) - 2C 9y LN <o> " %oy ) =0,
(7)
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o, B =‘l,2; o # [3.—“. - B P N T R

If one now defines the fields

{u,c}(a’k)(y,t) for ye(‘iia’k)-b(a), Y(a,k)+h(cx)) !

(0.0) for yer®®, PR, B @

fum T %y

1"

B8 =1,2; &« #B; and if one notes that
(u,c}:g;k)(t) = ol Ly SAELJLE L2
(9)
then (7) can be rewritten in the form
(oz)- (a)( FERE) + (a) 0]- ZC(B) (B) (y,8)
-1
P L L e O T

C(a)(o(a)(y+A.t) . c(a)(y-A,t)] < ZC(Q)O(B)(y,t)

2
‘“’h“"’s‘“’et[u‘“)(m.t) ) u(a)(y_A,t)] =0 ,  (10b)

%83 =1,2; o # B. Equations (10a,b) were obtained by replacing the fields
c3ky P?’ k), t) and 2N Y(P.5) + A, t), etc., by the smooth fields olfXy,t),

| 1."‘”\2 A,t), etc., defined over the entLre domain of the composite; here

| Az

j v1% %) denotes the midplane of the (a,k) layer (see Fig. 1l).

E The functional difference equations (10a,b) contain, as a subset,

i the solutions of the finite difference equations (7). That is, the new
fields satisfy (7) at y = YIB.K). Therefore, the new dependent variables
¢¥), ol@) are functions defined for all y which assume exact values at

[ layer midplanes. Assuming the admissibility of such expansions, all
sums and diiferences are now expanded about & =0 in a Taylor series;
this leads to the partial differential equations

-1
dVe o) | e, =) S(:x)éayc(a) BB g ;
- 2
C(:X)Cc(a) A h(a);:,o )S( )Séya (@) (ﬁ)c(ﬁ) =0 , (11)
:{;B = s &y U 8 .

1,2; « # B, where C, S are formal differential operators of the form

C = cosh(Aa Y, S (Aa g sinh(A3 ) . (12)

Equations (11) conantute a contmuu.m model of the composite. The
dependent variables d¥), ol@) of (11) can be used to reconstruct the
microstructural fields through (5)(noting (8)).

3.3 Scaling

—_—

Let the typical 'macrodimens ion'' of the problem be £ and the
typical "microdimension be A. The quantity 1 represent a dominant

signal wavelength associated with wave motion. Introduce the non-
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dimensional quantities

2
t=yly , v=tclt , ¢=plL . z(a) = o(o)/pc . r,(a) E u(a)/L
(13)

where p, c denote appropriate mixture density and wave speed. Then (l1)
becomes

C(d)gégn(a) > 8(:z)(;:g(ar),‘-_(or) y F(Q)S(B)Z(B) 0

- - 2 -

C(a)é}cim) N P(Q)CS(Q)BTY)(Q) . p(ﬁ)s(ﬁ)ain(ﬁ) 2B (14)
where

c(a) = cosh(cy(a)aT) , s(a) = (ey(a)aT)-lsinh(cy(a)aT) , (15a)

& coshied,) - 5= fem ) sinh(e3,) , S et S, (15b)

n(C!) : h(Ot)/A : -5(0) - n(a)p(a)/p . e(C!) = pczn(&)/g(d) 5 (15¢)

The governing equations (14) are now scaled such that, if ye(0, 1)
and 1€(0,4/c), then 2e(0, 1) and 7¢(0, 1); that is, the macrodimension is
now O(l) while the microdimension is O(€). Thus, it is evident that all
foregoing Taylor expansions about 4=0 are in fact expansions about ¢ = 0;
further, all operators are power series in €28), n =0,1,2... . Such
expansions are not required to converge, but only be asymptotic as
e »0 f4:.

3.4 Binary Mixture Theories

With some algebraic manipulations, equations (14) may be re-
written in a form characteristic of binary - type mixture theories as

follows:
B T Il L ey 1 )
3, o a::'J o g 83 070 = -1 a, (16a)
o e 1
BCTC*O(:’)aCn( b dolgeigtels Lyt (16b)
% =1,2. Here
2 2) (2 1) (1 2 2) (2 1 (1
GPSC()Z()-C()E(),cﬂst‘()n()-c()n(), clse.
cx=1/2!) + ((BC)Z/J:I + ((3{)4/6.' S % (16e)

The bracket in (16a) suggests a momentum equation while that of
(16b) has the character of a constitutive relation. The quantities P and R
represent constituent interaction terms.

A mixture theory of order a is now defined as those equations
obtained from (lba,b) by truncating the operators da)(.,-: and g a)i, as
well as the C_“g) in P and R, after O(czn'z) terms. In particular, a
mixture theory of order | is, under this definition, given by
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(@) . a+tl &) . %l
= (-1 % = (-1 R% (17a,b
p(2et (-1) P ¢ (-1) (17a,b)

(2,n/2-¢X)
cﬂ
1 2 2 (1
‘2p::: = Z(Z)_E‘( ) » € R* = n( ) - 'n( ) . (l&)d)

ooz : z L S S
a (a,x/2 - paTn)

Equations (17a) may be interpreted as mixture momentum relations and
(17b) as mixture constitutive equations. The interaction terms in this
formulation are proportional to displacement and stress differences,
respectively.

The operator a{ preceding the left side of each equation (17a,b)
can be eliminated by expanding the dependent variables in regular
asymptotic series in €. The result,upon retaining O(€e?) terms only, is

(o ap)_2 ( )= - 2.1 2)

2,277 - PRI - ¥, pemlnVan®) (18)
where § is a constant which is a complicated function of composite
geometry and material properties. The quantities z(@p), plop) here play
the role of ''partial" stresses and densities; their physical interpretation,
however, is not obvious. Details concerning the derivation of (18),
which shall be called a modified (first order) mixture theory, can he
found in [4].

Let us now consider the limit as € 4 0 in (16). If it is assumed,
that £ and ¢ may be selected such that 52( } = O, 550 ) =6¢l) .,
n=1,2..., where ( ) represents 17(0” or g(d., as ¢ » O(i.e., as the ratio
of micro-to macro-dimensions vanishes), then (16) reduces in dimen-
sional form to

2 (1) 41}, 21 2. el ™ 2
ray-(n o +n p )n E +n E )at]
Therefore, the theory is nondispersive as ¢ + 0, a result to be expected.
Equation (19) implies that the appropriate mixture density p, modulus
E, and wave speed c, are

-1 -1
1) (1 2 ~ - 1)~(1 2)~(2
p:n( )p( )+n(2)pt) . E L, gy (2)s(2)

fnol ™ = 0. (19

7S
s c =Ejpe.  (20)

3.5 Phase Velocity Spectra

It is evident that the foregoing theory represents a long wave-
length, low frequency approximation of composite wave motion. A
natural question concerns the range of validity of this approximation. A
convenient indication of the comparative accuracy of an approximate
theory can be obtained by studying the phase velocity spectrum,
Assuming steady-state sinusodal wave trains, equations (16), (17) or (18)
become a set of homogeneous algebraic equaticas from which the relation
between wave number k and phase velocity ¢ is calculated. A typical
comparison of exact, first order, and modified (first order) mixture phase
velocity spectra is shown in Fig. 2 for a Polymethyl methacrylate
(PMMA) - 304 stainless steel composite. The data shown represents
the first mode of propagation down to the cutoff frequency associated
with the first "'stop band''. The exact spectrum results from retaining
all terms in the operators of (16) and is identical to that given by
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Rytov [22]. Comparisons such as Fig. 2 indicate that reasonable
accuracy may be expected from a theory of order | down to wavelengths
equal to several microdimensions for problems where the energy is
partitioned primarily in the first mode. This is quite a remarkable
result for such an elementary theory. Additional details concerning the
phase velocity spectrum as well as transient pulse calculations and an
associated discussion conce raing initial and boundary conditions- can be
found in [4-9].

i. EXAMPLE 2: HEAT CONDUCTION

For the purpose of illustrating the Regular Asymptotic Method,
considera linear thermal diffusion process in a periodic, two-dimensional
array of unidirectional fibers of arbitrary cross section embedded in a
matrix, as illustrated in Fig. 3a. Leta 'cell' be associated with each
fiber as depicted in Fig. 3b. Each such cell consists of regions All) ang
Al occupied by the fiber and matrix, respectively, with unit outer
normals* Ni(l) and Ni(z). The interface between the two constituents
shall be denoted by [, and the outer boundary of the cell by C. With
respect to rectangular Cartesian coordinates X]» X2, X3 as shown in
£48e sa, leL le cowipusiie occupy the domain O < 32 L, ~o<x<e,

- @< X] <=. Assume that the two constituents in each cell are homo -~
geneous and isotropic with a perfect interface (no the rmal resistance).
Finally, let the initial coaditions, and the boundary conditions on

x3 =0, L be such that the temperature field is similar in each cell. In
view of the lastpremise it is sufficient to consider a typical cell with

xero heat flux normal to the boundary C. Consequently the basic equations
for the temperature fields T(Q) and heat flux vectors Qi(a’), o =1,2, are

(o) (@)

. (@)

(Qj 3 +.dE) =0 , (Qi + KT, i.) =0 on AT (21a,b)
@), 2) _ . wkl) _ o(2) (1) (2) (1) _
(Q‘ﬁ N;;j =i0% on G T =T  and (Q|3 - QB )NQ =0 onl.
(21e,d)

Equation (21a) is the conservations of energy; the relation (21b) is the
Fourier heat conduction law; equation (2lc) is a symmetry condition; and
(21d) represents tae interface continuity of temperature and normal heat
flux (note N3(”) =0). The superscripta = 1,2 refers to the fiber and the
matrix, respectively., The quantities d, k denote heat capacity and
t?':ermal conductivity, respectively. The notations( )y i = 3( )/ax~l and
() =23( )/at have been iatroduced for convenience.

4.1 Scaling

Equations (21), together with initial conditions at t=0 and appropri-
ate boundary data on x3 = 0, L specify a well posed problem involving

three spatial variables x; and time, t. The objective of the subsequent

analysis is to derive a continuum mixture theory governing the macro-
scopic diffusion process which involves only one spatial dimension (x3)

“Latin and Greek subscripts imply Cartesian tensors and the usual sum-
mation convention with ranges from 1 to 3 and | to 2 respectively.
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and yet reﬂects, at least approumatc.ly, the effect of conductlon on the
microscale. To this end, let A and A be associated with typical
I macroscopic' and ""microscopic'' observational dimensions, respectively.
These lengths may be defined in terms of characteristic thermal diffusion
times in the longitudinal and transverse directions according to
d i = = % i ' e

) T Y™ iy o e Y am) e
where d(m), K(m) denote mixture heat capacity and thermal conductivity
(to be defined later). In addition, it will be convenient to introduce a
mixture heat flux Q(m) based upon a reference temperature T, and a
parameter € as follows:

1

—) - h
(mm) k(m)T/A L€ = AN (tm/t(m) - (23)

The quantity € represents the ratio of micro-to-macro-dimensions of the
composite.

W

Q

With the aid of tae foregoing definitions, the following non-
dimmensional variables are intraduced
() (o)
» {D., €D = 2. 10 -
gy Ry Ak s 08l R
(23a)
/k ’ (23b)

(&5 cgp) = (x3,x'3)/A , T & t/t(
R L S L , Y 2K
whence (21) become

e ® 2o, Lot ek 5 ¥ 0 ond® 24ay

?
+

1)_,(2) (L)
g

; 5 = (x 1 ;
a2 (22 6= 1,2 and €, 3, Cdenote & ', I, € in nondirnensio :sl form;
the vectors v %) are unit outer normals to the boundaries of ; partial

derivatives are now defined by ( ),,L = 3( )/ag_l, (") =a( )ar.

=0 on 9. (24c,d

4.2 Mixture Equations

Binary mixture equations for this problem can be immediately
obtained by averaging (24a) over Gl according to

-1
(@a), =)
Fotggm =6 [ s(“)(gl,sz.e3.r)d51d:2 (25)

vy

(o)
(a) () (o)

where 3 represents D or 3 '« This yields, after a little algebraic
manipulation

Alap! 2 f(gp)f:":‘p} " (-1)a+1

(D, (1),
43,3 D

ds

48 (26a,b)
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(ap) _ n(:>x)‘3(:t:=1) («p) _ n(a)d(a) ' o) G(a)/(G“)ﬂl(Z)) y 27

(
The quantities Dga«p)’ i:rp) ~ n(a) represent partial heat fluxes, partial

heat capacities, and volume fractions, respectively. The variable p is
an interaction term reflecting heat transfer from the fiber to the matrix.
At this stage the mixture equations (26) are exact. Approximations arise
when one attempts to model the Fourier expressions for heat conduction,
and the interaction term.

4.3 Asymptotic Expansions

A fundamental premise is now introduced: the ratio of the
characteristic thermal diffusion times in the transverse and longitudinal
(fiber axis) directions in small compared to unity, i.e.,

2
e =t Jt  =(A/N <«<1. 28)
NI :
Equation (28) is appropriate for many composites used for thermal pro-
tection. The premise (28) suggests the following regular asymptotic
expansion for all dependent variables, denoted by Glwl:

20

G(a)(gi,-r;e) = T e GE,ZL)(g.l,-r) ’ (29)

n=0
If (29) is substituted into the governing equations (24a,b) and the coef-
ficients of similar €-order are equated, one obtains a system of equations

for eachn=0,1,2... . In what follows, a mixture theory is developed
based on the lowest order system.

4.4 Interaction Term

The lowest order system corresponding to (24a,b) is

e () {x) ()
2. T2 = y NS %3, = » \T, = = . 20,
("j,j “)(O) 0 \'33 + 3)(0) 0, (3 R TN 0)(0) (30a,b;c)
Equations (30c) yield
(o) ()
3 = ’ ’ 1
Ti0) = F0)és ™ 31

whence, to lowest order accuracy, equations (25), (27) furnish

'J(;’p) z - h(ap)s,(;p)<g3.-r) . (32)

In order to complete the mixture formulation, the functional
dependence of the interaction term P on the averaged temperatures :?(Qa)
must be determined. For this purpose it is necessary to consider D(a()) »
7:3) and to satisfy the continuity of temperature including O(e2) termﬁs(. )
TJLDegin this task, one finds from (32) and (24b) that

(o) _ (o) (&)
B[Oy =" 2ps . (33)

Next, with use of (33) and (30b, ¢), equation (30a) becomes
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(@ (&),  _ f(a)

» d > = Q *» T . 34

( T2 BB (&5 7) (34)

The functions o(a) can be related to p, defined by (26b), by integration of
(34) over da), use of Gauss' Theorem, and the symmetry condition (24c);
the result is:

d94% < e T (35)
(@)

Thus, one obtains the following relations for 3(2):

(o)

lagal el o P e e B b 2] (36)

rr » b =
()PP
The appropriate boundary conditions are, from (24c, d),

2) (2 (L) ,2)(2)

£ = 0 » < ) b6 el J = ’
32) "B 28 S8 BonpT" YmpMp P
2 (1) () (2). 2

- = (v o~ " 37
3(2) 3(2) lo(o) L(O))/C on J (37)

rquactions (30), (37) constitute a ''inicro' boundary value problem
ia the §1» &> - plane; the solution is unique within a function (€3, T).Oace

) ;
2% 5re known, one can write

%2)

«) _ . (o) 2 _ o) S - (- 4

aS -'3(0)+€}(—u(0)(€3r7')_ t € P3J (51'52)+O(‘ ) (38)
where

,.J(”_,_(l) ,_q(?.)-_( ) ~ ~ 7

A = U(Z) » 0 = S + (5 0) = o(o))/f = (39)
Upon averaging (39), one obtains

~(1 2

:)’(aa)(gy,r) & 3§03(€3"r) + ¢ P:_‘,_,(aa) . (40)

rience, the lnteraction term can be written
1 2 2 I Zalu=l
p=ad Mgl | oo g1 )t (41a,b)

Equations (4la), (32),(26a) close the mixture theory. The primary
result is expression (41b), which can be used to determine the interaction
coefficient, a, for arbitrary fiber and/or cell geometry via the solution
of a time independent problem defined over the unit cell. In terms of

_.:.;(al, this problem takes the form:
( )
@ Ly on @ (42)
B B
la) (2] JEEE (2] (1) . (1 e (2
3:‘(3 V;S =0 one; 7% =g . (% )3:-’(3 )-):( )T,[(3 ))V;S =0 ony, (43)
5*” 20 at point O:rT”) (44)

In general it is difficult to obtain an analytical solution to the
above micro boundary value problem. As an alternative, a finite
element procedure has been proposed "21] which may be utilized for
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arbitrary two-dimensional cell geometry. This procedure is based upon
a modified Reissner-type variational principle, the corresponding
tunctional of which is defined by

2 (C{)
gz f [‘;&(’)s*éa)sﬁ:zé“u el 1;) 24146 + §'.2*(3:"(1)-3*(2))ds
a=1 (=) L a 9 (45)

G St

S

which is defined in terms of 3*(:') on G(Q) and 9% on §. The equations for
749 follow from the requirement [l be stationary with respect to
arbitrary variations of 749 and D%; here D% is 2 Lagrange multiplier
which physically represents the heat flux normal to the boundary J.

4.5 Numerical Results

The finite element procedure has been used for the solution of the
temperature microstructure problem and the interaction coefficient for a
variety of geometries and combination of material properties. Details of
such calculations can be found in [21]. Here several results of particular
interest are noted; properties used are listed in Table 3.

A frequent fibrous composite geometry is a hexagonal array of
circular cylindrical fibers. In practice it is common to approximate the
cell geometry of this case by concentric circular cylinders [20].
Numerical results, based on the theory presented herein, related to the
accuracy of this approximation are shown in Fig. 4, where the inter-
action coefficient has been calculated as a function of fiber volume
fraction and thermal conductivity. From the data, the conclusion can be
drawn that for a practical range of fiber volume fractions,the concentric
cylinder approximation can be used without any significant loss of ac-
curacy.

For calculation of the interaction coefficient, the concentric
ircular cylinders approximation based on equal fiber volume fraction
2n also be used for composites containing square fibers arranged in a
quare array. This is borne out by the results shown in Fig. 5.

0O

w O

The fields s*(a)(gl, £2) needed to calculate the interaction term can
also be used for the calculation of the temperature distribution in a unit
cell. From (38)-(40) one has

3’(a)(gi, o = 5(cya) " a[:3,(121)__:)_(23.)][:I*(c:f)__J'J‘:(czra)] : (46)
{n the right side of (46) the only quantity dependent upon inplane coor-
dinates 51 and £ is 3**3). It follows, therefore, that curves of equal
549%) are also isothermal lines within the framework of the mixture
tneory. For this reason, and to illustrate the type of temperature micro-
structure that can be obtained from the mixture theory, contours of equal
mida), suitadbly normalized, are given in Fig. 6 for square fibers ina
similar array.

Finally, an indication of the accuracy of the proposed mixture
model and the construction procedure can be obtained by comparison of
mixture-predicted response with 2D or 3D computer code calculations.
This has been accomplished in [20] for the case of concentric circular
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cylinders where two spatial dimensions and time are involved.
Calculations were conducted to determine the evolution of the temperature
fleld in a quescent half-space x3 > 0 subject to the boundary condition

& Oststo
T(O, r,t) = . o (47)
g, t>t
o

Both the mixture equations and the full 2D problem were solved by finite
difference schemes [207; the latter was used as the correlating norm for
estimating the accuracy of the mixture theory solutions. Fig. 7 illustrates
typical average temperature profiles in the two constituents after a short
time following the termination of the temperature pulse. The ability of

the mixture theory to predict the temperature microstructure is
illustrated in Fig. 8; the radial distribution of temperature obtained from
the mixture theory is almost identical to the exact solution.

4.6 Remarks

The significant feature of the above mixture theory, and of similar
theories proposed for wave propagation [16-19], is that it converts what
1s essentially a three-dimensional problem to a problem involving a
single spatial variable, without losing the essential details of local field
distributions. The reduction in the number of dependent variables leads,

of course, to a substantial increase in numerical efficiency.

5. SELECTED APPLICATIONS

Two applications involving nonlinear wave propagation are briefly
reviewed in this section in an effort to demonstrate the utility of mixture
theories with microstructure. The first involves delamination of
laminated composites. The second concerns finite amplitude elastic-
olastic wave propagation in fibrous composites.

5.1 Wave Propagation and Debonding in Laminated Composites

A ''first order' mixture theory with microstructure has been
developed in [ 12] for longitudinal wave propagation and debonding in a
laminated, binary composite with periodic microstructure. The case
considered concerns small isothermal deformations, linear elastic con-
stituents, and a Mohr-Coulomb interface failure and slip model. In view
of the last item the problem is nonlinear. With respect to Fig. 1, a
condition of plane strain was assumed in the x3-direction and wave
motion yielding symmetric velocity v] and anti-symmetric velocity v
distributions with respect to the x;~-coordinate within each lamina.
Theoretical construction was based on the Differential-difference Method.
[n dimensional form, and with reference to Fig. |, the relevant equations
are
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) ( . +1 2 )
c(ap _P,arp)u 3 (_“cz P c(.lp) . Zc(cx'yu(‘ya) : (48a, b)
11,1 1 11 1,1

y=1
. « (1 w2
P :K(u( a)-u( a)) if P<lP K
1 l (e
A-Baox
2 S c

P = (‘—‘g;)sgn(u(la)-u(za)s P =P | - (48¢)

h“)+h(2) l 1 cr

Equations (482) are mixture momentum equations while (48b) represent
mixture constitutive relations. The quantity P denotes a momentum
interaction term. The variables c“(dp), p(O’P) denote partial quantities and
are defined by ( g(dp) = o) f@2) where ( )(cxa is an averaged variable

and 2% = WD) £ H2), The quantity lpcr‘ is related to the interface
shear stress g%, and normal stress 05, by

12
(1), (2) L = 5
(h "+h )‘pcrl = !G“!‘Z ‘ -—A-BOEZ (0‘22 <0
032 - (n(l)X(I)E(Z)u(llalun(z)l(Z)E(l)u(lzal))/(n(I)E(2)+n(2)E(l)) E (49)

The constants A, B represent interface cohesion and frictional coefficients,
respectively. The constants c(aﬁ), K are given in terms of the composite
properties and geometry by

(0)2
K = 30020, (1212 (0 (1), @) @) (ee) _ (a) (o) _ Al
) () (B) 1) (2)
Jopy _ 2NP) CE=E— B HY @ el 2; o),
£ NERNEY

(50)
where )\,u 2are Lame’ constants.

Considerable insight into the modeling capability of the above
mixture theory can be gained by comparison of theoretical calculations
with the experimental impact data on delaminated plates reported in [23].
The composites in this study consisted of alternating layers of Poly-
methyl methacrylate (PMMA, Rohm and Haas type A) 0.762 mm thick,
and 6061-T6 alumiaum 0.792 mm thick. The laminae of the composite
were oriented perpendicular to the impact plane, and struck by a
projectile from a 10cm bore light gas gun. An aluminum buffer plate
l.0cm thick was placed at the rear of the composite to improve
planarity of the transmitted wave front. A transparent Dynasil 100
window followed the buffer, and a thin mirror was vapor deposited at the
buffer window interface. The motion of the mirror was monitored to
within 21.5 « 10-5mm by means of a displacement interferometer. The
experimental configuration reproduged from [23] is depicted in Fig. 9.
Ine shot matrix is summarized in Table 1.

The mixture theory, consisting of (48) was coded in finite dif-
ference form and solved numerically. Material properties for the
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composite laminates, flyer plate mate rial buffer and window materials
are listed in Table I. Input to the computer code required only the
material properties of all constituents, goemetries of the test configura-
tion, and flyer impact velocity. Numerical values for A and B were
determined by a parametric study on the results of experimental shot
aumber 2. They were found to be A = 0,01 x 109 dyues/cm2 and B = 0.50.
All other correlations were performed using these values. Typical
results are depicted in Figs. 10-12. As can be seen, agreement is
generally excellent. Both theoretical and experimental results clearly
exhibit the effects of bond breakage and delamination. This is manifested
by the appearance of a precursor at the front of the wave profile and by
greatly reduced oscillations behind the wave front when compared with
both theoretical and experimental results for perfectly bonded wave-
guides (e.g., see [12]).

5.2 Nonlinear Wave Propagation in Fibrous Composites

A binary, first-order mixture theory with microstructure has
been developed in [17], using the Regular Asymptotic Method and the
concentric cylinders approximation, for nonlinear waveguide-type
propagartion parailel to tne fibers ot a unidirectionally reinforced fibrous
composite with initial periodic hexagonal array, Fig. 13. The resulting
model incorporates the effects of thermodynamics, finite deformation,
and elastic-plastic constituents. The constitutive relations for this
analysis consist of a Mie-Gruneisen equation of state which relates mean
pressure, density, and internal energy, and a von Mises-type yield

~cirteria and associated (J2) flow rule which govern the stress derivators.
Under the assumption of an adiabatic process and isotropic, homogeneous
constituents, the following mixture theory was obtained for composites
with perfect bonds

(a) Continuity:
(x).(xa)

3, B F =0, = -T(p V3 ),31- 1/p (51)
a=1
{b) Momentum:
(@) | (aa) (@) (wa) (xa) (ea)_, , @+l
[0 (-p+S,,) 1 4= P Dt" RS L e (51a)
where (@a) (a)
aa) (o
2 P+(-1)¥(-p+s, ) ')
s n(,‘)B(cz).c(cxa) 33 3
=1 (d)
= n
(la) (2a)
8(v -y )
(- % (&) () ) 3 > 3 ' (51b)
1'2 :
=] '
I L T S BNl I R S P (R L 1Y
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(1) (2) @23 .t i om
B =1, B = - (2/n )(E-Zn +En +lnn ") . (51d)
(c) Energv:

2

i n(o:){:p(c::at)D(a:a)e(ara) L g i‘aa)v(aa)]=(-l)a+lR ) (523)
et t 3 3,3 el

1 1
B = fapss ) Plgtbtel (52b)
rr

{d) Caloric equation of state (Mie-Gruneisen);

p(aa) 5 g(p(cya))+I_(p(aa))p(aa)e(aa) (53)
(e) Stress derivator constitutive relations:

(va) _(@2) _ 4 (ca) 1 (xa) (lay _ (la) 1 _(1a)

& Ban TRl b LBy =8 =58 S4a)
(2a)_(22) 2. (¢a) 1 (c¢a) 3 1

g Sr~ :-—{{'v?';-;f (1 +°T?f‘1n'{—]))] . (54b)

n n

(2a) _ (2a)  (2a)
See = —(Srr +S33 ), (54¢)

where 2
Aua) =0 if J(ua) » ; Yta) D(ora)J(Zua) ol

3 Y(cz)2 (za) (xa) _(aa)_.(xa) (ca) (xa)
oS - oY a
s 533 v3'3+Srr if Dt J?_ 0
(zz) Y(:()Z
and .TZ“ = i (54d)
(f) Interface stress match:
(1a) z (2a)
(-p+Srr) (x3,t) = (-p+Srr) (x3, ) . (55)
(g) Volume fractions:
Dila)n(l) - n(l)f(la) ) n(l)+n(2) S (56)
(h) Definition of averages:
(1)
l 1 - 1
o 5 2w e, (57a)

(1)2
Tr
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(2)

(2 e 17w Par (57b)
*n(r(z) -r(l)) l_(l)
The dependent variables above number 14. These are h(&);—p<aa),

Vgo'a)’ plad), sga-;’a) and e(®2)(¢=1,2). The foregoing represent volume
fraction,density, velocity component in the x3-direction, stress deviator
component in the x3-direction, and internal energy, respectively.
Equations (51)-(56) constitute 14 independent relations for the above
unknowns. The independent variables, which were originally r, 8, x3,t
(see Fig. 13), are now x3,tonly. All equations are written in an
Eulerian description. It should be noted that @ = 1 refers to the fiber
while ¢=2 denotes the matrix.

In an effort to test the validity of the first-order mixture theory,a
comparison was made between calculations performed using the quasi-
one-dimensional mixture equations, and a formal two-dimensional
solution ot the concentric cylinders problem. The mixture solutions were
obtained by writing (50-56) in finite difference form and solving
simultaneously for the 14 dependent variables. The necessary numerical
analysis and the resulting code is described in [24]. The two-
dimensional solutions were generated using a well-known Lagrangian
finite difference computer code called CRAM [25]. A typical cell of a
quartz-phenolic composite occupying the half-space x3 < 0 was selected
for study. For computation in the range 0 < p s 30 K bar a Mie-
Gruneisen relation of the form

3
gad: F

i

H(Q) (’.‘1) (C!)p(aa)e(da) (&) - (ora)/ (G) 1 ; (58)

+G » = e

was used, where p(%)‘ denotes the initial density of material o, and H,-(_Q),
G¥) are material constants. The constituent material properties
employed in all calculations are given in Table 2. Quiescent initial
conditions were assumed. Boundary conditions consisted of a particle
velocity of 0.5cm/p sec of 1,0-p sec duration applied uniformly to both
constituents at x5 = 0.

A comparison of mixture theory and two-dimensional finite dif-
ference code predictions of averaged constituent particle velocity as a
function of time is illustrated in Figs. 14, 15, The two-dimensional code
prediction, which resolves the particle velocity distributions in the
radial direction, where averaged according to (57) in order to provide
direct comparisons with the mixture theory. Results are shown for a
propagation (x3-direction) distance of 0.5cm. Agreement between the
finite difference and mixture theory calculations is judged to be excellent.
Finally, it is noted that on the same computer (aUNIVAC 1108), the CRAM
calculation required roughly 500 times the computer time needed for the
equivalent mixture calculation.
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Table I. The Experimental Configurations. *
Projectile
Composite
Experiment thickness Velocity Thickness
No. (cm) Material (cm/psec) (cm)
i 0.820 Aluminum 0.001355 1. 634
2 0.775 Aluminum 0.001420 1. 631
3 0. 8065 Aluminum 0.001144 1571
4 0.803 PMMA 0.002118 0. 691
5 0. 805 PMMA 0.003078 0. 694
6 0.812 Tungsten 0.001289 0. 975
Carbide
7 0.3810 Aluminum 0.001330 0. 656
3 0.809 Aluminum 0.001066 0. 164
In all experiments the buffer plate was 1 cm thick., The bond

thicknesses were 2all less than 0.0002 ecm thick.

Experiment 1 exhibited excessive flyer tilt and Drumheller and

Lunderzan considered the data useless.
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Table 2

Material Properties used in TINC and CRAM Calculations

Material 1

Material 2

Initial Density pia) (g/cc)

Shear Modulus, p(a)(dynes/cmg)

1.85

106.0 (10°)

1. 29

30.3(10%)

Bulk Modulus, Hl(&)(dynes/cmz) 397.6 (107) 96.0 (10%)

Hz(a)(dynes/cmz) 38.0 (10*?) 0

1% (aynes/em?) 275.0 (10**) | 11.3(10%)
Mie-Girlinsisan Ratin, G .32 .52
Yield Stress in Simple Tension

S PRRECTRE 2.75(10%) | 1.33(109)

Radial Fiber Radius, r (cm) 0.08
Outer Cylinder Radius r (cm) 0s 20
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TABLE 3

{ATERIAL PROPERTIES USED FOR COMPUTATIONS

=(1)
Thermal Conductivity Ratio -‘_5(—5-) = 50
k
;(1)
Specific Heat Ratio _2) = 0.5
u
Volume Fractions n, = .2 (Fiber), n, = .8 (Matrix)
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